Advances in 4D Gated Cardiac PET Imaging for Image Quality Improvement and Cardiac Motion and Contractility Estimation
نویسندگان
چکیده
Quantitative four-dimensional (4D) image reconstruction methods with respiratory and cardiac motion compensation are an active area of research in ECT imaging, including SPECT and PET. They are the extensions of three-dimensional (3D) statistical image reconstruction methods with iterative algorithms that incorporate accurate models of the imaging process and provide significant improvement in the quality and quantitative accuracy of the reconstructed images as compared to that obtained from conventional analytical image reconstruction methods. The new 4D image reconstruction methods incorporate additional models of the respiratory and cardiac motion of the patient to reduce image blurring due to respiratory motion and image noise of the cardiac-gated frames of the 4D cardiac-gated images. We describe respiratory motion estimation and gating method based on patient PET listmode data. The estimated respiratory motion is applied to the respiratory gated data to reduce respiratory motion blur. The gated cardiac images derived from the listmodel data are used to estimate cardiac motion. They are then used in the cardiacgated images summing the motion-transformed cardiac-gated images for significant reduction in the gated images noise. Dual respiratory and cardiac motion compensation is achieved by combining the respiratory and cardiac motion compensation steps. The results are further significant improvements of the 4D gated cardiac PET images. The much improved gated cardiac PET image quality increases the visibility of anatomical details of the heart, which can be explored to provide more accurate estimation of the cardiac motion vector field and cardiac contractility.
منابع مشابه
Advanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملReducing the respiratory motion artifacts in PET cardiology: A simulation study
Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...
متن کاملFour-Dimensional Image Reconstruction Strategies in Cardiac-Gated and Respiratory-Gated PET Imaging.
Cardiac and respiratory movements pose significant challenges to image quality and quantitative accuracy in PET imaging. Cardiac and/or respiratory gating attempt to address this issue, but instead lead to enhanced noise levels. Direct four-dimensional (4D) PET image reconstruction incorporating motion compensation has the potential to minimize noise amplification while removing considerable mo...
متن کامل4D PET: Beyond conventional dynamic PET imaging
In this paper, we review novel techniques in the emerging field of spatiotemporal 4D PET imaging. We will discuss existing limitations in conventional dynamic PET imaging which involves independent reconstruction of dynamic PET datasets. Various approaches that seek to attempt some or all of these limitations are reviewed in this work, including techniques that util...
متن کاملList-Mode Affine Rebinning for Respiratory Motion Correction in PET Cardiac Imaging
Positron Emission Tomography (PET) is an established functional imaging modality but its practical deployment is hampered by motion artefacts. This paper proposes a method for correcting reconstructed PET images through a list-mode rebinning process. Respiratory motion is compensated for by applying 2D affine transforms to the respiratory gated sequence of line-ofresponse events prior to image ...
متن کامل